Eliminating Column Formwork Using Prefabricated UHPC Shells

Traditional formwork acts as molds for wet concrete and supports concrete wet weight and live load of equipment and workers temporarily. Scaffolding acts as a supporting platform and provides temporary access to structures under construction. Erecting components of formworks and scaffolding together takes time, can cause traffic congestion, and increases the construction cost. It is also possible that the design cannot be incorporated due to unexpected site condition, and formwork failures can occur because of deviations from the original design. Formwork failure can also occur due to possible human errors or crushing of wooden surface where the heavy loads are placed if the bearing surface of joints is not appropriately designed. Based on “Use and Re-use of Formwork: Safety Risks and Reliability Assessment” report, the re-used formwork is not factored into its design, and since it is subjected to wide range of loads and exposures, it can experience possible degradation in its structural capacity. Furthermore, failure of formwork can also occur during concrete pours and can cause concrete leaking, failure of formwork components, complete structure collapse, and serious injuries or deaths. Possible failures of formwork can be caused by mistakes during erection, wrong calculations of weight acting on formwork, extra loads or due to natural disasters. To prevent possible hazards of formwork and scaffolding failure, a new concept is proposed using ultra-high performance concrete (UHPC) to prefabricate a shell which acts as permanent stay-in-place form for bridge elements. The prefabricated shell is intended to eliminate the conventional formwork and scaffolding while reducing the on-site construction time and acting as a durable protective layer for normal strength concrete inside it.

    Language

    • English

    Project

    • Status: Active
    • Funding: $50000
    • Sponsor Organizations:

      Accelerated Bridge Construction University Transportation Center (ABC-UTC)

      Florida International University
      10555 W. Flagler Street
      Miami, FL  United States  33174

      Office of the Assistant Secretary for Research and Technology

      University Transportation Centers Program
      Department of Transportation
      Washington, DC  United States  20590
    • Principal Investigators:

      Azizinamini, Atorod

    • Start Date: 20190601
    • Expected Completion Date: 0
    • Actual Completion Date: 0

    Subject/Index Terms

    Filing Info

    • Accession Number: 01713200
    • Record Type: Research project
    • Source Agency: Accelerated Bridge Construction University Transportation Center (ABC-UTC)
    • Files: UTC, RiP
    • Created Date: Jul 31 2019 2:42PM