Blockchain Technology and Airports - A Primer

The concept of blockchain emerged approximately 10 years ago as the architecture underlying the cryptocurrency Bitcoin. The idea of blockchain is to create open, distributed ledgers or data that can be shared across many different nodes (i.e., each computer within the network of computers). Blockchain can be public, non-permissioned (anyone can initiate and validate a transaction on that blockchain), or private/permissioned (only certain parties can initiate and validate a transaction). Since the concept emerged, blockchain has been recognized for its potentially broad applicability beyond financial or currency transactions, for example, to set up “smart contracts” that use a highly complex and contingent set of criteria and conditions that, when met, automatically and rapidly trigger a transaction. Blockchain offers several key advantages, including increased security and control over transactions, increased speed of transactions, decreased cost of transactions and data sharing, and expanded opportunities for more complex transactions. Blockchain could also be used to incentivize efficiency, transparency, and good behavior across parties. In the airport industry, potential applications for blockchain include security and identification, flight data management, airport resource management, safety and maintenance, baggage and cargo tracking, regulatory compliance, and more. Recent use cases include, offering blockchain applications specific to health and well-being aspects within the built environment, COVID-19 for passenger health verification and contact tracing, facilitating a contactless passenger experience, and tracking the movement of healthcare supplies and pharmaceuticals (including vaccines) from origin to final destination. While blockchain guidance may be available for other industries, there is currently no airport-specific implementation guidance available. The objective of this research is to develop detailed guidance for the implementation of blockchain and associated technologies to provide business solutions, operational efficiencies, and improved transparency for airport decision-makers and stakeholders. The guidance document should conform to the following format with a range of emphasis in each area and include, but not be limited to: (1) Awareness (10-15%): What is blockchain and how is it being used at airports? Examples of implemented use cases and corresponding significant applications; and Emerging trends (e.g., standards to track for rapid adoption). (2) Readiness (25-30%): Are airports and stakeholders ready? Development of planning and decision-making tools (e.g., decision trees, checklists) to determine if blockchain is applicable; Examples to determine the appropriate resources needed; and Business process mapping to determine data gaps. (3) Implementation (40-45%): What are the right resources and tools? Formulation of detailed use case studies to assist airports, airlines, and stakeholders in implementing a blockchain business solutions; Determination of required expertise; Development of new concept of operations for blockchain-based solutions and new business models through an impact assessment to identify value creation and contribution; and Principles and artifacts (i.e., technical reference architecture identifying the interfaces and where the data resides), collaboration frameworks, governance model, security. (4) Assessment and Lessons Learned (15-20%): What did we learn? How do we operationalize? Design methodologies and monitoring processes; Development of a training manual for internal staff for the monitoring and evaluation process; Defining the monitoring points to ensure the robustness of the solution; and Development of key performance indicators (KPIs) and return on investment (ROI) modeling to determine success and savings.

Language

  • English

Project

  • Status: Proposed
  • Funding: $330000
  • Contract Numbers:

    Project 01-41

  • Sponsor Organizations:

    Airport Cooperative Research Program

    Transportation Research Board
    500 Fifth Street, NW
    Washington, DC    20001

    Federal Aviation Administration

    800 Independence Avenue, SW
    Washington, DC  United States  20591
  • Project Managers:

    Schatz, Theresia

  • Start Date: 20210315
  • Expected Completion Date: 0
  • Actual Completion Date: 0

Subject/Index Terms

Filing Info

  • Accession Number: 01677271
  • Record Type: Research project
  • Source Agency: Transportation Research Board
  • Contract Numbers: Project 01-41
  • Files: TRB, RIP
  • Created Date: Jul 30 2018 3:03PM