Reduction of Structural Damage from the Thermal Expansion of Concrete Using Multifunctional Materials

Control of thermal expansion is a critical goal of engineering design in a wide range of applications, particularly in cases where system components are small, are subject to large changes (gradients) in temperatures, or require extreme dimensional stability over a wide range of temperatures. In particular, the thermal expansion of concrete plays a significant role in the durability of the transportation infrastructure and causes misalignment, cracking, and structural failure. As such, the objective of this study is to improve the durability and extend the life of transportation infrastructure using multifunctional materials. This research aims to use high-performance materials such as shape memory components to address the issue of thermal expansion integrated into next-generation designs, to enhance the longevity and safety of these structures. As a result, the more specific objective of this research is to design and characterize the use of multifunctional materials that stabilize the changing structure due to thermal expansion. The characteristics of these materials will work in conjunction with the temperature dependence of concrete. This will require very specific properties from the materials, making trained shape memory alloys (SMAs) a likely candidate, to meet the characteristics required to address the problem statement. The methods to train the materials should be developed in a repeatable fashion, and their adaptability demonstrated as a function of temperature and stress from the thermal expansion of the concrete.

  • Supplemental Notes:
    • 18STTAM01

Language

  • English

Project

  • Status: Completed
  • Funding: $70000
  • Contract Numbers:

    69A3551747106

  • Sponsor Organizations:

    Department of Transportation

    Intelligent Transportation Systems Joint Program Office
    1200 New Jersey Avenue, SE
    Washington, DC  United States  20590

    Office of the Assistant Secretary for Research and Technology

    University Transportation Centers Program
    Department of Transportation
    Washington, DC  United States  20590
  • Managing Organizations:

    Department of Transportation

    Intelligent Transportation Systems Joint Program Office
    1200 New Jersey Avenue, SE
    Washington, DC  United States  20590

    Transportation Consortium of South-Central States (Tran-SET)

    Louisiana State University
    Baton Rouge, LA  United States  70803
  • Project Managers:

    Karaman, Ibrahim

  • Performing Organizations:

    Texas A&M University, College Station

    318 Jack K. Williams Administration Building
    College Station, TX  United States  77843
  • Principal Investigators:

    Hartl, Darren

  • Start Date: 20180315
  • Expected Completion Date: 20190915
  • Actual Completion Date: 20190915
  • USDOT Program: University Transportation Centers

Subject/Index Terms

Filing Info

  • Accession Number: 01664068
  • Record Type: Research project
  • Source Agency: Transportation Consortium of South-Central States (Tran-SET)
  • Contract Numbers: 69A3551747106
  • Files: UTC, RIP
  • Created Date: Mar 19 2018 12:10PM