Disaster-Resilient and Self-Assessing Multifunctional Transportation Structures

Shape memory alloy (SMAs) can produce large recoverable deformations triggered by stress in a response known as superelasticity. This response has been shown to limit the damage sustained by the structure from adverse events such as earthquakes, and have been considered in a range of civil engineering applications. The most widespread SMA candidate for such applications is the nickel-titanium (NiTi) SMA, which is cost-prohibitive for large-scale applications. Instead, the research team proposes a low-cost and easily processed iron (Fe)-based SMA as an alternative. Furthermore, the iron-based SMA shows an interesting meta-magnetic shape memory response, where a change in induced magnetization of the material occurs from applied stress and can be easily detected using commercial magnetometers. This property can be harnessed to create a method to monitor the stresses and strains on structural systems with iron-based SMAs remotely and in a non-destructive fashion. The combination of these properties enable a new kind of structural health monitoring framework where the load-bearing and sensing elements are the same, and quantitative information could be collected in real-time with simple instruments. The goal of the proposed project is to create large dimension iron-based SMA rods and that are suitable for structural and transportation applications and determine the maximum part size. This study will also demonstrate bulk-Fe-SMA rods and cables that are capable of sustaining high stress and elongation. Optimal configuration of rods and sensors will be computationally determined through combined magnetic-mechanical modeling and validated through experiments. For the implementation phase of the project, the team will show that the strain in large size iron-based SMA rods and cables directly correlates with changes in its magnetic response.

  • Supplemental Notes:
    • 18STTAM02

Language

  • English

Project

  • Status: Completed
  • Funding: $170000
  • Contract Numbers:

    69A3551747106

  • Sponsor Organizations:

    Department of Transportation

    Intelligent Transportation Systems Joint Program Office
    1200 New Jersey Avenue, SE
    Washington, DC  United States  20590

    Office of the Assistant Secretary for Research and Technology

    University Transportation Centers Program
    Department of Transportation
    Washington, DC  United States  20590
  • Managing Organizations:

    Department of Transportation

    Intelligent Transportation Systems Joint Program Office
    1200 New Jersey Avenue, SE
    Washington, DC  United States  20590

    Transportation Consortium of South-Central States (Tran-SET)

    Louisiana State University
    Baton Rouge, LA  United States  70803
  • Project Managers:

    Karaman, Ibrahim

  • Performing Organizations:

    Texas A&M University, College Station

    318 Jack K. Williams Administration Building
    College Station, TX  United States  77843
  • Principal Investigators:

    Karaman, Ibrahim

    Hartl, Darren

  • Start Date: 20180315
  • Expected Completion Date: 20190915
  • Actual Completion Date: 20190915
  • USDOT Program: University Transportation Centers

Subject/Index Terms

Filing Info

  • Accession Number: 01664054
  • Record Type: Research project
  • Source Agency: Transportation Consortium of South-Central States (Tran-SET)
  • Contract Numbers: 69A3551747106
  • Files: UTC, RIP
  • Created Date: Mar 19 2018 11:21AM