Developing a Robotic Simulator and Video Games for Professional and Public Training

Civil engineers are not educated with robotics. They need to be trained on the job with effective tools. The most recent simulation trainer that the principal investigator (PI) has built is currently being used by the US Navy to train surface warfare officers in decision making under stress. In a crowded in-port environment, the crew on a ship’s bridge is trained to probe and identify suspicious boat behavior within the port’s traffic pattern. Officers in charge of the simulation training lesson use software for high-level control of dozens of other ships, boats, and aircrafts that quickly react and adapt to the crewed ship’s actions based on lower-level programmed autonomy and game-like user interaction. Without this virtual “experience,” improperly trained crews put lives in danger. Scenarios that would be catastrophic in reality can also be simulated and, without this training, especially for recovering from error states, operators may inadvertently lose valuable hardware, produce erroneous results, and compromise system and human safety. An iterative software engineering process will be used to investigate and build a series of Simulation Training And Control System (STACS) prototypes. These prototypes will run on Android/iOS devices, PCs, or MACs and will be used for operator training (in simulation) and operator control of a robot team in the real world during inspection. The tradeoff between operator control and robot autonomy in simulation will be investigated to gain insight into the design of efficient control software in robots and develop an effective robot team, including multiple unmanned aerial vehicles (UAVs) and climbing robots. This project aims to build a STACS prototype within a 3D simulation game-like environment and develop a realistic training environment. Specific objectives include: (1) Investigate and optimize the design of user interaction and user interfaces within a full 3D game-like environment for training and control, (2) Investigate and optimize the tradeoff between manual and autonomous control of multi-robot teams for bridge inspection, (3) Train bridge inspectors in the use of the proposed multi-robot system, and (4) Provide human operators with complete situational awareness and operational control during an ongoing inspection. The focus of the first year will be to: (1) Design, build, and test four STACS prototypes in a full 3D environment within the Unity3D game engine; (2) Design and build a simulation “game” with tele-operative, semi-autonomous, and fully autonomous control of the proposed multi-robot system for bridge inspection; and (3) Establish a communication link between the STACS and real robots to facilitate transition from simulation to real-robot monitoring, interaction, and control.

Project

Subject/Index Terms

Filing Info

  • Accession Number: 01646003
  • Record Type: Research project
  • Source Agency: Inspecting and Preserving Infrastructure through Robotic Exploration University Transportation Center
  • Contract Numbers: 69A3551747126
  • Files: UTC, RiP
  • Created Date: Sep 14 2017 11:46AM