Early-Age Fiber-Reinforced Concrete Properties for Overlays

A common pavement rehabilitation technique for rutted or cracked hot - mixed asphalt concrete roadways is to mill the surface and then overlay with up to 6 inch es of a portland cement concrete (PCC) layer. More recent advancements in research has proven that a feasible top wearing surface can be made at this 2 inch (50 mm) thin layer if it is comprised of f iber reinforced c oncrete (FRC). FRC has increasingly being used in UTW overlays since it has been proven through experimental lab and field testing improve the fatigue life and reduce deflections of jointed concrete overlay slabs. Cracking and debonding of the overlay structure can initiate as a result of drying shrinkage, and temperature shrinkage, slab settlements, or external load. Temperature - induced curling and cracking has been researched many times and is currently recognized as one of the major failure mechanisms in concrete pavements. Slabs are designed to have joints cut at spacing sizes proportional to the thickness. These jo ints are cut in order to provide a specific location for thermal and humidity - induced cracking while also keeping net curling lift - off deflections to a minimum. It has experimentally been verified that with FRC overlays and pavements, not every joint crack s upon the first thermal cycle. Yet the few joints that do crack at early ages produce the lowest load transfer efficiency and widest crack widths at later ages. There are no known publications or research performed which has studied why or how the addition of fiber - reinforcement in a thin concrete overlay affects the joint cracking and slab curling. A full - scale test pavement of a 50 mm thick FRC overlay was constructed in July 2009, which has been subjected only to environmental loading since then.. This is a unique pavement section as well because it has no mid - panel slab cracking except in pre - placed constructed debonding zones. The cracking of joints was monitored at early ages between 3 and 20 days as well as climatic temperature data of the air and in 4 depths within the pavement structure. Existing temperature and joint opening models overpredict the actual crack widths measured from the field. The proposed research will attempt to improve prediction of crack width for thermally - loaded FRC pavements. The early - age properties of FRC as measured in this research will be utilized in a co hesive zone finite element analysis of the same The main objective of this research is to perform experimental tests to determine the hardened properties of fiber- reinforced concrete as they change with time at early-ages. These properties and their function with time can be implemented into finite element modeling to improve overlay prediction at early ages.


  • English


  • Status: Completed
  • Funding: $37434
  • Contract Numbers:


  • Sponsor Organizations:

    Research and Innovative Technology Administration

    University Transportation Centers Program
    1200 New Jersey Avenue, SE
    Washington, DC  United States  20590
  • Managing Organizations:

    Mountain-Plains Consortium

    North Dakota State University
    P.O. Box 6050, Department 2880
    Fargo, ND  United States  58108-6050
  • Project Managers:

    Kline, Robin

  • Performing Organizations:

    University of Utah, Salt Lake City

    College of Engineering, Department of Civil Engineering
    Salt Lake City, UT  United States  84112-0561
  • Principal Investigators:

    Bordelon, Amanda

  • Start Date: 20150731
  • Expected Completion Date: 20180731
  • Actual Completion Date: 20180814
  • USDOT Program: University Transportation Centers Program
  • Source Data: MPC-492

Subject/Index Terms

Filing Info

  • Accession Number: 01579921
  • Record Type: Research project
  • Source Agency: Mountain-Plains Consortium
  • Contract Numbers: DTRT13-G-UTC38
  • Files: UTC, RiP
  • Created Date: Oct 27 2015 4:18PM