Simulation of Liquefaction-induced Damage of the Port of Long Beach Using the UBC3D-PLM Model

Liquefaction-induced damage has been reported in numerous seismic events around the world: Alaska 1964, Japan 1995, Turkey 1999, Taiwan 1999, Iran 2004 and China 2008. Southern California has an extensive record of seismic events mainly caused by ruptures of the San Andreas Fault, which extends from the Imperial Valley in Southern California to Cape Mendocino, approximately 150 miles north of San Francisco. The Port of Long Beach is located within a few miles of this fault line, and is near the Newport-Inglewood and the Palos Verdes faults. The port has experienced significant expansion projects in the past decades which have been completed by placing hydraulic fill behind rock retention dikes. These man-made loose deposits have shown to be susceptible to liquefaction. This research intends to calibrate numerical models with experimental and field tests from a comprehensive technical review of geotechnical engineering reports and technical papers concerning the Port of Long Beach. The abundance of quality field and laboratory testing performed in this project offers a unique opportunity to use advanced constitutive models for predicting the potential of liquefaction-induced damage that the port could experience in future earthquakes. Most of the liquefaction studies from the port have been oriented to qualitatively discuss the effects of liquefaction but not to quantitatively demonstrate the phenomenon via advanced constitutive soil models and finite element programs. The design, construction, and prediction capabilities in geotechnical engineering have improved significantly with computational advancements and sophisticated constitutive models that can capture the fundamental behavior of soils. This research is intended to visually explain the potential for liquefaction at the Port of Long Beach with numerical simulations using PLAXIS 2D (recently purchased by CSULB, California State University Long Beach). The research will provide estimates of the permanent deformations, both on the ground and on slopes. The ultimate goal is to determine how resilient this project will be in the event of an earthquake. This project will contribute to understanding the role of engineering on the resiliency of the Port of Long Beach, which is vital for the California freight network.


  • English


  • Status: Completed
  • Funding: $34999
  • Contract Numbers:


  • Sponsor Organizations:

    California Department of Transportation

    1120 N Street
    Sacramento, CA  United States  95814

    Office of the Assistant Secretary for Research and Technology

    University Transportation Centers Program
    Department of Transportation
    Washington, DC  United States  20590
  • Project Managers:

    Benouar, Azzeddine

  • Performing Organizations:

    National Center for Metropolitan Transportation Research

    University of Southern California
    650 Childs Way, RGL 107
    Los Angeles, CA  United States  90089-0626
  • Principal Investigators:

    Arboleda-Monsalve, Luis

  • Start Date: 20151021
  • Expected Completion Date: 20160901
  • Actual Completion Date: 0
  • Source Data: RiP Project 39742

Subject/Index Terms

Filing Info

  • Accession Number: 01572365
  • Record Type: Research project
  • Source Agency: National Center for Metropolitan Transportation Research
  • Contract Numbers: 65A0533
  • Created Date: Aug 6 2015 1:00AM